国产福利精品一区二区,欧美精品VIDEOSSEX少妇,亚洲国产理论片在线播放,国产欧美精品区一区二区三区

科研通知
信息通知
當前位置: 首頁 >> 科學研究 >> 科研通知 >> 信息通知 >> 正文

【學術報告】Danesh K. Tafti——Some applications of Deep Learning techniques to fluid dynamic solutions

2023-09-08  點擊:[]

Some applications of Deep Learning techniques to fluid dynamic solutions

 

Danesh K. Tafti

 

William S. Cross of Engineering

Dept. Mechanical Engineering

Virginia Tech, Blacksburg, USA

 

講座時間:

2023910日 上午10:00-11:00

講座地點:

三號實驗樓307

講座內容簡介:

        考慮到計算流體動力學 (CFD) 解決方案的復雜、昂貴及不確定性,人工智能 (AI) 和深度學習 (DL) 方法在計算成本及結果準確度上的優勢讓它在流體力學領域獲得了越來越多的重視。該法可通過更好地參數化現有模型來實現,因而其常被應用在湍流建模、新模型開發或者通過加速傳統求解算法或開發降階代理模型來降低 CFD 成本等方面。然而,納維-斯托克斯方程中包含的復雜非線性物理特征與高昂的生成訓練數據的成本是這些方法推廣過程中亟待解決的問題與挑戰。該講座將探討深度學習在流場預測與偏向工程導向方面應用,內容包含兩方面的案例研究:第一個案例研究了隨機分布的柱狀顆粒集合中隨時間變化的混沌流場的未來狀態預測;第二個案例研究了不同堆積密度和雷諾數下隨機分布的長橢球顆粒集合中的穩定流場的預測。此外,研究還對通過預測流場計算出的顆粒受力等物理量的準確性進行了評估,證實了當前模型的準確性與可靠性。

Introduction:

Computational Fluid Dynamics (CFD) solutions are complex, expensive, and uncertain. Artificial Intelligence (AI) and Deep Learning (DL) methods have the potential to give accurate results at much less computational cost. This can be through better parameterization of existing models, e.g. turbulence modeling, or through the development of new models where none were possible, or through reducing the cost of CFD by accelerating conventional solution algorithms or by the development of reduced-order surrogate models. However the complex non-linear physics embedded in the Navier-Stokes equations and the cost of generating training data (data paucity) are some of the challenges that impede the generalizability of these methods. The seminar will explore the prediction of flow fields and downstream engineering tasks such as determining forces acting on embedded objects through the use of DL techniques. In the first case study, the future state prediction of a time-dependent chaotic flow field in a random array of cylinders is investigated. In the second case study the prediction of steady flow fields in different random assemblies of prolate ellipsoids under different packing densities and Reynolds numbers is investigated. In both case studies, the accuracy with which engineering quantities such as drag forces can be found using the DL predicted flow fields is also evaluated.

主講人簡介:

        Danesh. K. Tafti 教授擁有三十余年計算流體力學相關的研究與工作經驗,研究方向涵蓋了大渦模擬及高性能并行運算算法開發、撲翼飛行的空氣動力學分析、顆粒-流體兩相流及泥沙輸移高精度仿真等方向,共發表論文二百七十余篇,其中有學術期刊論文一百四十余篇,總引用數達7179次(來源:谷歌學術,20239月)。Tafti教授曾任《ASME J. Heat Transfer》副主編,目前為《International Journal of Heat and Fluid Flow》、《Journal of Applied and Computational Mechanics》及《International Journal of Rotating Machinery》期刊編委。Tafti 教授多年來一直保持著與美國國家能源實驗室在流-固兩相流方向的的深度合作,到目前為止承擔來自美國國家科學基金會、美國能源部、國家超級計算應用中心等政府部門以及企業的項目經費共計21,900,295美元,其中個人承擔7,613,767美元,近三年個人獲得研究經費共計501,212美元。Tafti 教授執教期間共指導了28名博士(四名在讀)、14名博士后以及28名碩士(2名在讀),擁有豐富的研究生教學、指導經驗。

 

上一條:【學術講堂】 Dr. Saulo Da Silva Mendes, University of Geneva: Nonlinear wave transformation over steep breakwaters 下一條:【學術報告】9月4日9:30-11:30,329會議室——土木工程防災減災應急處置專題研討會

關閉